The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The instrumental variable (IV) approach is a widely used way to estimate the causal effects of a treatment on an outcome of interest from observational data with latent confounders. A standard IV is expected to be related to the treatment variable and independent of all other variables in the system. However, it is challenging to search for a standard IV from data directly due to the strict conditions. The conditional IV (CIV) method has been proposed to allow a variable to be an instrument conditioning on a set of variables, allowing a wider choice of possible IVs and enabling broader practical applications of the IV approach. Nevertheless, there is not a data-driven method to discover a CIV and its conditioning set directly from data. To fill this gap, in this paper, we propose to learn the representations of the information of a CIV and its conditioning set from data with latent confounders for average causal effect estimation. By taking advantage of deep generative models, we develop a novel data-driven approach for simultaneously learning the representation of a CIV from measured variables and generating the representation of its conditioning set given measured variables. Extensive experiments on synthetic and real-world datasets show that our method outperforms the existing IV methods.
translated by 谷歌翻译
可以测量接触物体的3D几何形状的基于视觉的触觉传感器对于机器人执行灵巧的操纵任务至关重要。但是,现有的传感器通常很复杂,可以制造和细腻以扩展。在这项工作中,我们从小地利用了半透明弹性体的反射特性来设计一种名为DTACT的强大,低成本且易于制作的触觉传感器。DTACT从捕获的触觉图像中所示的黑暗中精确测量了高分辨率3D几何形状,仅具有单个图像进行校准。与以前的传感器相反,在各种照明条件下,DTACT是可靠的。然后,我们构建了具有非平面接触表面的DTACT原型,并以最少的额外努力和成本。最后,我们执行了两项智能机器人任务,包括使用DTACT进行姿势估计和对象识别,其中DTACT在应用中显示出巨大的潜力。
translated by 谷歌翻译
许多研究都致力于学习公平代表的问题。但是,它们并未明确表示潜在表示之间的关系。在许多实际应用中,潜在表示之间可能存在因果关系。此外,大多数公平的表示学习方法都集中在群体级别的公平性上,并基于相关性,忽略了数据基础的因果关系。在这项工作中,我们从理论上证明,使用结构化表示可以使下游预测模型实现反事实公平,然后我们提出了反事实公平性变异自动编码器(CF-VAE)以获得有关领域知识的结构化表示。实验结果表明,所提出的方法比基准公平方法获得了更好的公平性和准确性性能。
translated by 谷歌翻译
已经开发了各种深度学习模型,以从医学图像分段解剖结构,但它们通常在具有不同数据分布的另一个目标域上测试时具有差的性能。最近,已经提出了未经监督的域适应方法来缓解这种所谓的域移位问题,但大多数都是针对具有相对较小域移位的方案设计的,并且在遇到大域间隙时可能会失败。在本文中,我们提出DCDA,一种新的跨模型无监督域适应框架,用于具有大域移位的任务,例如,来自Octa和OCT图像的分段视网膜血管。 DCDA主要包括解开表示样式转移(DRST)模块和协作一致性学习(CCL)模块。 DRST将图像分解成内容组件和样式代码,并执行样式传输和图像重建。 CCL包含两个分段模型,一个用于源域,另一个用于目标域。这两种模型使用标记的数据(与相应的传输图像一起)进行监督学习,并在未标记的数据上执行协作一致性学习。每个模型都侧重于相应的单个域,并旨在产生专用域特定的分段模型。通过对视网膜船分割的广泛实验,我们的框架从Octa到Oct和Oct到Octa的OctA到Octa的骰子分数均达到目标培训的甲骨文,显着优于其他最先进的方法。
translated by 谷歌翻译
In this paper we revisit endless online level generation with the recently proposed experience-driven procedural content generation via reinforcement learning (EDRL) framework, from an observation that EDRL tends to generate recurrent patterns. Inspired by this phenomenon, we formulate a notion of state space closure, which means that any state that may appear in an infinite-horizon online generation process can be found in a finite horizon. Through theoretical analysis we find that though state space closure arises a concern about diversity, it makes the EDRL trained on a finite-horizon generalised to the infinite-horizon scenario without deterioration of content quality. Moreover, we verify the quality and diversity of contents generated by EDRL via empirical studies on the widely used Super Mario Bros. benchmark. Experimental results reveal that the current EDRL approach's ability of generating diverse game levels is limited due to the state space closure, whereas it does not suffer from reward deterioration given a horizon longer than the one of training. Concluding our findings and analysis, we argue that future works in generating online diverse and high-quality contents via EDRL should address the issue of diversity on the premise of state space closure which ensures the quality.
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
Adversarial attacks can easily fool object recognition systems based on deep neural networks (DNNs). Although many defense methods have been proposed in recent years, most of them can still be adaptively evaded. One reason for the weak adversarial robustness may be that DNNs are only supervised by category labels and do not have part-based inductive bias like the recognition process of humans. Inspired by a well-known theory in cognitive psychology -- recognition-by-components, we propose a novel object recognition model ROCK (Recognizing Object by Components with human prior Knowledge). It first segments parts of objects from images, then scores part segmentation results with predefined human prior knowledge, and finally outputs prediction based on the scores. The first stage of ROCK corresponds to the process of decomposing objects into parts in human vision. The second stage corresponds to the decision process of the human brain. ROCK shows better robustness than classical recognition models across various attack settings. These results encourage researchers to rethink the rationality of currently widely-used DNN-based object recognition models and explore the potential of part-based models, once important but recently ignored, for improving robustness.
translated by 谷歌翻译
Neural networks are susceptible to data inference attacks such as the membership inference attack, the adversarial model inversion attack and the attribute inference attack, where the attacker could infer useful information such as the membership, the reconstruction or the sensitive attributes of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a method, namely PURIFIER, to defend against membership inference attacks. It transforms the confidence score vectors predicted by the target classifier and makes purified confidence scores indistinguishable in individual shape, statistical distribution and prediction label between members and non-members. The experimental results show that PURIFIER helps defend membership inference attacks with high effectiveness and efficiency, outperforming previous defense methods, and also incurs negligible utility loss. Besides, our further experiments show that PURIFIER is also effective in defending adversarial model inversion attacks and attribute inference attacks. For example, the inversion error is raised about 4+ times on the Facescrub530 classifier, and the attribute inference accuracy drops significantly when PURIFIER is deployed in our experiment.
translated by 谷歌翻译
Graph neural networks (GNNs) are popular weapons for modeling relational data. Existing GNNs are not specified for attribute-incomplete graphs, making missing attribute imputation a burning issue. Until recently, many works notice that GNNs are coupled with spectral concentration, which means the spectrum obtained by GNNs concentrates on a local part in spectral domain, e.g., low-frequency due to oversmoothing issue. As a consequence, GNNs may be seriously flawed for reconstructing graph attributes as graph spectral concentration tends to cause a low imputation precision. In this work, we present a regularized graph autoencoder for graph attribute imputation, named MEGAE, which aims at mitigating spectral concentration problem by maximizing the graph spectral entropy. Notably, we first present the method for estimating graph spectral entropy without the eigen-decomposition of Laplacian matrix and provide the theoretical upper error bound. A maximum entropy regularization then acts in the latent space, which directly increases the graph spectral entropy. Extensive experiments show that MEGAE outperforms all the other state-of-the-art imputation methods on a variety of benchmark datasets.
translated by 谷歌翻译